Abundant evidence indicates
that every hearing aid dispensed
should feature a directional
microphone. Yet, only 20% to
30% of all hearing aids do. Why?
One reason is that as few as 8%
of dispensing professionals have
access to the QuickSIN or HINT
tests, and perhaps even fewer
realize that half of their patients
are leaving their offices with a 5
dB signal-to-noise ratio (SNR)
hearing loss. In this context, it's
no wonder that some users
continue to complain, “I hear
better without my hearing aids.”
Additionally some directional
systems offer relatively low (<2
dB SNR) improvement in noise.
Although it's important to
recognize that even these small
increases in SNR can lead to
significantly better hearing in
noise, an Al-DI improvement of
less than 2 dB is unlikely to be
noticed by patients in most
listening environments.

PERSPECTIVE

Myths About Hearing in Noise
and Directional Microphones

A directional microphone in every hearing aid?
Yes, but in some cases, patients may not notice the difference.

By Mead C. Killion, PhD

s mentioned in Part 1' of this
Athree-part series of articles, the

motivation for the following reflec-
tions comes partly from three MarkeTrak
studies published in HR by Sergei
Kochkin** which report:

1.80% of those who admit they need
hearing aids don’t buy them;

2.40% of those who do buy hearing
aids do not place themselves in the
“satisfied” category;

3. Better understanding of speech in
noise is the largest improvement
sought by those wearing hearing
aids; and

4. Improved sound quality is the sec-
ond largest improvement sought by
those wearing hearing aids.

There are good reasons to recommend
directional microphones with every hearing
aid. This is supported by four premises:

1. Directional microphones provide the
only verified method of improving
the ability of hearing aid users to
understand speech in noise. Noise-
reduction circuits do not.

2. The cost of adding high-perfor-
mance directional microphones is
trivial compared to the cost of
today’s digital hearing aids.

3. A surprising number of times normal-
hearing patients complain that “hear-
ing in noise” is their biggest problem,
even though they have a normal
audiogram and test within normal lim-
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president of Etymotic
Research, Inc, Elk Grove Vil-
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its for hearing in noise on the
QuickSIN test (this has been noted by
several clinicians, including corre-
spondence with David Hawkins, PhD,
Mayo Clinic, Ft. Lauderdale).

4. There is a stigma attached to wear-
ing hearing aids.

Can We Reduce Stigma by Using
Directional Hearing Aids?

The fourth item requires discussion. In
lectures, Edgar Villchur has speculated
that the reason hearing aids have a large
stigma and eyeglasses have little stigma
may be simply that hearing aids don’t
always work well; specifically, they don’t
solve the real problem of hearing in noise.
When we see someone wearing eyeglasses,
we assume they can see quite well in all
situations. Conversely, when we see some-
one wearing hearing aids, experience tells
us that they probably don’t hear well, and
that they may not be able to keep up with
conversation in a restaurant or at a party. A
stranger may even wonder if their compre-
hension is impaired. It is precisely those
situations in which wearers are readily
observed that loss of the ability to hear in
noise often substantially exceeds any cor-
rection supplied by the hearing aid.

Unfortunately, only 20% to 30% of dis-
pensing professionals obtain directional-
microphone hearing aids for their
patients.>® In many cases, directional
microphones are reserved for patients with
the greatest signal-to-noise ratio (SNR)
losses, so those patients are still coping
with a substantial SNR loss even after ben-
efiting from the directivity of the hearing
aids. On the other hand, most dispensing
professionals do recommend the use of
hearing aids that feature digital noise
reduction. To our knowledge, no one has
proved that a digital noise reduction
scheme improves the ability to understand
speech in noise over and above the

THE HEARING REVIEW 14



Myths About Hearing in Noise with Directional Microphones

improved understanding provided by sig-
nal processing that makes more speech
cues audible. As long as nearly every hear-
ing aid wearer is left with obvious difficul-
ty hearing in noise, we can speculate that
the stigma will continue.

But what if all patients with less than 5
dB SNR loss were fitted with good hearing
aids that included directional micro-
phones having AI-DI performance of 5 dB
or better? Many of those patients would
then be able to understand speech better
than their normal-hearing companions at
a restaurant or noisy party. The 20% with
little or no SNR loss would be able to
understand conversations even when the
SNR was 3 dB to 5 dB worse than their
normal-hearing companions could tolerate
(a 3 dB SNR increase corresponds to about
30% increase in sentence scores). At the
least, we would begin to erase the stigma
associated with wearing hearing aids.

Myth: Measurable Benefit Equals
Noticeable Benefit

There is a pitfall in this suggestion,
however. Evidence discussed in this article
suggests that the real-world directivity of
some ITE hearing aids is so low that
switching from an omnidirectional (omni)
setting to a directional setting will not pro-
vide a noticeable increase in intelligibility.

Anecdotally, in perhaps 500 hours of
testing and wearing directional-micro-
phone hearing aids over the years (starting
in the 1970s), the author has observed
that, when using array microphones with
over 7 dB AI-DI directivity, the improved
performance in noise is almost always
immediately obvious. With directional
microphones having 4-5 dB real-ear AI-DI,
the improvement is usually heard readily
on the first comparison in restaurants and
cocktail parties, but this is not always
true. Even with 4-5 dB AI-DI, there are
times when the moment-to-moment varia-
tions in noise and talker level are great
enough that the improvement is not obvi-

be detected in a real-world environment?
And what if the directional performance of
many hearing aids fall below this number?

Among other things, this might help
explain the results of Walden et al.,* whose
40 subjects reported an average improve-
ment of only 3% (0.3 on a 0-10 scale) in
real-world performance when comparing
directional and omni microphone modes
(using a scale in which 0 equalled “very
poor” and 10 equalled “very good”). The
estimated AI-DI of the aids they used was
1.9 dB. Author’s Note: Walden et al.® found
average improvements in sentence scores at 60
dB and 75 dB SPL of 20% and 32% respective-
ly between directional and omni microphone
settings in a test booth. We can estimate the
directivity of the hearing aids they used based
on the slope of 13.8%/dB Cox et al.” reported
for the CST: The 20% and 32% test-booth dif-
ferences in speech-in-babble scores suggest dif-
ferences of 1.5 and 2.4 dB SNR, respectively,
or an average of 1.95 dB apparent SNR
improvement in their test booth condition. In
fact, the actual AI-DI performance may have
been even less: Given the time delay of 0.8 ms
across the head, the results of Julstrom® sug-
gest we may treat the noise from the three
speakers as uncorrelated, so the loudspeaker
arrangement used in that experiment (noise
sources at 90° 180° and 270°) would have
provided an SNR improvement significantly
larger than the actual AI-DI rating. Rather
than make an uncertain correction, an AI-DI
estimate of 1.9 dB is used here.

So, What Is the Minimum Detectable
Directivity Improvement Limit?

What AI-DI performance is so small that
hearing aid users won't be able to reliably
hear the difference in a real-world listening
environment? The question is important
because many available directional-micro-
phone hearing aids have AI-DI directivity
of 3 dB or less, especially after venting.

Minimum detectable differences have
been established for various characteristics
of sound, but we are not aware of any mea-

sure of minimum detectable differences in
SNR under real-life or simulated real-life
conditions. We thus created a Minimum
Detectable Directivity Improvement (MDDI)
test to simulate the case in which a hearing
aid wearer in a noisy restaurant or social
situation switches back and forth from
omni to directional mode and tries to hear
the improvement, if any, in the directional
mode. We adjusted the level of the talker in
the separate-tracks section of the QuickSIN
test,” and asked subjects to make A-B com-
parisons between presentations in which
the talker-to-babble ratio in B relative to A
was randomly varied in 2-dB steps from -6
dB to +6 dB SNR. The QuickSIN segments
were chosen because the talker/babble SNR
had already been made equivalent across
sentences during its development.

The results shown in Figure la indicate
that the listening test itself is reasonably
accurate on the average, but that in identi-
fying SNR differences, subjects operate at
only chance performance for a 2 dB differ-
ence between omni and directional AI-DI.

Besides Walden et al.,® at least three
other studies'* since 1995 have reported
directional benefit—as indicated by subject
responses on the Background Noise (BN)
subscale of the Profile of Hearing Aid
Benefit*—using directional microphones in
which the AI-DI was reported or could be
estimated from the available data. Figure 2
shows the relationship between reported
benefit and estimated AI-DI for all four
studies, data that tend to support the con-
clusion that an AI-DI greater than 2 dB is
required for significant perceived benefit.

This is not to say that an AI-DI of 2 dB
(or even less) is not valuable to patients. For
example, patients obtained 20% and 32%
increased sentence scores in the directional
mode in Walden’s soundbooth ex-
periments.® Thus, even relatively small
increases in SNR improvement can lead to sig-
nificantly better hearing in noise; however, an
AI-DI as low as 2 dB is unlikely to be noticed
by the patient in a real-world setting.

ous without two or

three back-and-
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background might
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FIGURE 1A-B. Detection of SNR differences in 16 subjects when using a female
talker with 4-talker babble. 1a) Average judged SNR vs. presented SNR; 1b)
Percent correct identification of SNR differences vs. actual SNR differences.
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FIGURE 2. Estimated AI-DI for the hearing aids in
four studies.*"*" Reported directional benefit
(PHAB-Background Noise) vs. estimated Al-DI.



The Importance of Measuring the
Patient’s SNR Loss

We have sometimes been content to
“do our best” in fitting hearing aids, even
when the result leaves a moderate-to-
severe handicap for hearing in noise.
Unfortunately, the “best we can do” with-
out adequate information is not always
sufficient. When dispensing professionals
don’t measure the degree of hearing loss
in noise—the SNR loss—that their
patients have, there is no way to deter-
mine the extent of the problem the
patients are left with when they leave the
office. According to Mueller,"* only 8% of
dispensers appear to regularly use a HINT
or QuickSIN test, the two popular tests for
measuring SNR loss. The HR Dispenser
Survey® indicated that about 2-in-5 offices
(42%) reported routine conducting of
speech-in-noise testing using the SIN,
QuickSIN, HINT, or some other method.

Thus, the reason that 70% to 80% of
patients leave the office without directional
microphones is probably because few dispens-
ing professionals realize that half of all their
patients have an SNR loss of 5 dB or greater.
In most cases, ignorance is not bliss—nor
does it bode well for customer satisfaction.
Indeed, the above may be the explanation
for why otherwise good dispensing profes-
sionals are not succeeding in providing the
help their patients need for hearing in
noise. Just as importantly, knowing the
patient’s SNR loss allows the dispensing
professional to counsel their patients about
the problems to expect in noise (even
accounting for the benefits of directionali-
ty), so that patients with moderate SNR
loss who read the glowing brochures will
not experience disappointment.

Figure 3 shows the SNR loss-distribu-
tion data gathered from Cannito &
Taylor," Arcaroli,' and dispensing sites in
Illinois, Florida, and California (unpub-
lished data, D. Benson & D. Hawkins’
2001 survey of SNR distribution for hear-
ing aid patients, and M.C. Chisolm, P.
Pessis & G. Gudmundsen’s 2000 survey of
150 hearing aid patients analyzed for SNR
in three audiology practices). The study
showing the greatest average SNR loss was
the Cannito & Taylor study.'” We asked if
we could retest a random sample of 15 of
patients from this study, and the
researchers readily agreed. We actually
found slightly higher SNR losses on retest
of most of his patients; the researchers had
reported the better of two QuickSIN scores
and we reported the average. The com-
bined data indicate that approximately
50% of hearing aid wearers have an SNR
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FIGURE 3. Distributions of SNR loss, based on QuickSIN testing of 283 hearing
aid wearers at 6 offices in lllinois, Florida, and California. Also shown is the dis-
tribution of SNR loss obtained on 19 recent cochlear implant patients using the

QuickSIN test.'

loss of 5 dB or greater, and 20% have an
SNR loss of 10 dB or greater.

It is also interesting to note the excep-
tional improvement in cochlear implant
processors. At one time, only the cochlear
implant “stars” could carry on a conversa-
tion without lipreading. Of the group of
19 recent cochlear implant patients in the
Arcaroli study* (Figure 3), 1-in-7 (those
with less than 12 dB SNR loss) would
understand speech in noise better than 15%
of hearing aid wearers. If those same
cochlear implant patients could make use
of a good directional microphone (eg, a 5
dB AI-DI directional microphone, effec-
tively reducing a 12 dB SNR loss to a 7 dB
SNR loss) and the hearing aid wearers did
not, the best of the cochlear implant
patients would hear better in noise than
40% of the hearing aid wearers!

More to the point, consider that the
addition of good directional microphones
(=5 dB AI-DI) to the better hearing aids
would mean that 50% of hearing aid wear-
ers should be able to understand speech in
noise at the same SNR as the average nor-
mal-hearing subject, assuming the noise is
typical of restaurants and social gatherings
(where the noise arrives with more or less

its Triano hearing aid
that delivers a similar
improvement within
a BTE aid. Con-
sidering that the difficulty of hearing in
noise is the number-one complaint of hear-
ing aid wearers, the development of sec-
ond-order directional microphones is good
news indeed. (Author’s Note: At the 1994
AAA convention, ER demonstrated a sec-
ond-order ITE microphone? with 7 dB
AI-DI performance.)

Myth: All Directional Systems
Provide Equal Benefit to Patients
We return to the fact that only 20% to
30% of the hearing aids dispensed feature
directional microphones.>* This is perhaps
not surprising since most dispensing profes-
sionals don’t assess the SNR handicap of
their patients, and for the reasons discussed
above, many of their patients report “direc-
tional microphones don’t work.” In addi-
tion, there is a mistaken belief by dispensing
professionals that digital noise reduction
can solve the problem by effectively increas-
ing the wearer’s ability to understand
speech in babble noise. Further obstacles in
designing and evaluating directional hearing
aids are illustrated in Figures 4-10.
Venting and Al-Dl. Figure 4 shows
the effect of a typical vent combined with
a directional microphone having an
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Figure 4. Effect of unequalized directional frequency response com-
bined with a 10-mm long by 2-mm diameter vent. Al-DI may drop by 1
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FIGURE 5. Measured effect of venting on directivity
of one BTE hearing aid: Solid line is unvented, and
dotted line is vented condition.
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FIGURE 6. Three directional microphone hearing aids
measured in 1996. The three had horizontal-polar
derived Al-DI estimates of 2.0 dB, 2.7 dB, and 4.7 dB.

uncompensated low-frequency rolloff.
Below about 900 Hz, the omnidirectional
sound coming through the vent domi-
nates, and the directional sound of the
hearing aid is completely masked.

Figure 5 from Burnett*® was an early
documentation of this problem with vent-
ing. In this case, the high-frequency direc-
tivity was already small, so the estimated Al-
DI drops from 1.2 dB to 0.2 dB with vent-
ing. This is an extreme example, but it illus-
trates that a large initial AI-DI is required of
a hearing aid in order to maintain a good
AI-DI after venting,

For open-ear, or nearly open-ear fit-
tings, real-ear directivity at low frequencies
can be preserved by introducing additional
low-frequency gain, a design approach used
by at least three manufacturers, including
Etymotic Research.”*

Diffraction and the Testing and
Measurement of Directivity. In Figure
6, hearing aids #1 and #2 showed better
directivity when measured in a free-field
(unmounted) than when measured on
KEMAR. This illustrates the severe degra-
dation in real-ear performance that can
result from failing to take into account the
diffraction around the ear.

This design shortcoming continues in
many present-day hearing aids, as indicat-
ed by the data on hundreds of hearing aids
reported by Dittberner & Bentler* and
shown in Figure 7. Note that the average
free-field (unmounted) ITE performance
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comes within 0.7 dB of the theoretically
obtainable value, yet the average in-situ
performance averages only 2.7 dB, 3.3 dB,
and 3.5 dB AI-DI for the three types of ITE
directional microphones.

An industry average of 3.3 dB suggests
that lesser designs range down to 2 dB and
below. This was precisely what
Christensen et al.” found during measure-
ments performed on 14 digital ITE direc-
tional hearing aids as shown in Figure 8.
Two of the 14 aids had an AI-DI of approx-
imately 2 dB. The data in Figure 8 repre-
sent the average of two directivity mea-
sures made on each hearing aid:

1) Polar directivity plots measured
on the KEMAR manikin in
Etymotic Research’s walk-in ane-
choic chamber, and

2) Diffuse-field directivity measured in
Etymotic Research’s reverberation
room. In the latter case, four
matched loudspeakers driven from
four non-coherent noise sources
improved the room’s diffusivity,
and the average of measurements
made at several locations in the
reverberation room provided a stan-
dard deviation of less than 0.3 dB at

ufacturing. When the seven ER-related
hearing aids are excluded, nearly 30% (2
of the remaining 7 hearing aids) had AI-DI
ratings of about 2 dB.

Despite the advantages sometimes
claimed for dual-cartridge directional
microphones, it is interesting to note
that all but one of the lower-performance
microphones tested were of the dual
design; only one of the higher-perfor-
mance microphones was. This is not sur-
prising. Good directional performance in
a single-cartridge directional micro-
phone depends solely on making sure
that the amplitude and phase response of
the acoustic filters formed on the front
and back of the diaphragm combine
properly with the amplitude and phase
response caused by diffraction around
the ear. When tested on a manikin or
human with the sound coming from the
“null” angle, a nearly identical but oppo-
site pressure in the front and back cavi-
ties is produced at each frequency. The
microphone transducer itself does not
enter into the directional performance;
at the null angle, there is no pressure dif-
ference across the diaphragm, and so
you could poke a hole in the diaphragm

frequencies between 250
Hz and 6300 Hz. . .

In checking the reliability Shedtatichs] Fan Eio
and validity of these data, repeat BTE ITE
measurements were made in 1storder Cardioid 4.8dB 40d8 4.1dB
both rooms on the same hearing Hypercardioid 6.0d8 51d8 56dB
aids. Figure 9 shows a set of Spercardioid | 57dB  [50dB SAdB
such measurements made during
the development of the End fire BTE
SonionMicrotronic CC- 2nd order Cardioid 8848 8.1dB
Microphone.? Both the test- Hypercordioid|  88d8 |- 7448
retest and between-method Supercardicid|  9.1B _ . B _
agreement is good. We found

that having both measurements
available helped in the design of
a complete directional-micro-

FIGURE 7. Measured Average-DI for BTE and ITE directional-
microphone hearing aids (top right, circled). From Dittberner &
Bentler,” with permission.

phone or array-microphone.

Design Considerations
and Microphone Matching.
To return to the data shown in
Figure 8, six of the first seven
hearing aids (from the left) had
been chosen as part of a quality-
control check on the in-situ per-
formance of microphones ER
had either designed, helped
design, or were designs of one of

CONSTRUCTION

ER’s patent licensees. All of
these aids had expected AI-DI
performances of approximately
5 dB, and this expected perfor-
mance held up through the
complications of everyday man-
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FIGURE 8. Al-DI of 14 directional digital hearing aids. The num-
bers shown are the average of the horizontal-polar-derived and
the diffuse-field-derived Al-DI between 500 Hz and 6300 Hz
(adapted from Christensen®). When disregarding the 7 directional
hearing aids on the left, the average Al-DI of the remaining aids
is 3.5 dB, with 2 aids at about 2 dB. In terms of microphone sys-
tem construction, “sd” represents single direction microphone,
and “do” represents “dual omni” microphone.
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and not affect its directivity (such a hole
would affect the sensitivity, of course). In
practice, once the dimensions of the
inlets and internal cavities of the micro-
phone are locked into the metal forming

on the directional
performance of a
dual-microphone
directional with 5 mm physical spacing
(approximately 4 mm effective acoustical
spacing). At low frequencies, the micro-
phone effectively points backwards!

In addition to the problem of obtaining
matched microphones in the first
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place, the high-sensitivity, low-
noise electret microphones now
used in hearing aids sometimes
change in sensitivity and frequency
response after temperature and
humidity cycling, and the clogging
of ports with debris.®® Thus, even
when two microphones start out

o well matched, subsequent differen-

tial changes can reduce the AI-DIL
Whatever the explanation, the mea-

FIGURE 10. Theoretical performance of dual-mic directional
microphone with minor mismatches of 0.125 dB of insensitiv-
ity and 10 Hz difference in low-frequency cutoff. At low fre-
quencies, the hearing system essentially points backwards.

sured results suggest that the “dual
is better” principle is not supported
in the real world or in the hearing
instrument literature.*

“1 Hear Better Without
My Hearing Aids”

The above statement can be readily
understood in the case of hearing aids
with low directivity and typical digital
bandwidth. First, in typical cocktail-party
noise levels of 82-85 dB SPL (ie, 70 dB
HL), the background babble would mask
all but the most intense 10 dB of the
dynamic range of the desired talker’s
speech cues. Thus, someone with less
than a 60 dB audiometric loss would hear
all the available speech cues unaided.

Second, as shown in Figure 8, a signifi-
cant number of directional-microphone
digital hearing aids have an AI-DI of 2 dB
in a hearing aid with limited bandwidth.
The average bandwidth we measured on
the digital aids shown in Figure 11 was
only 5.8 kHz. Al calculations (SII) for a
hearing-impaired subject with 8 dB SNR
loss indicate that a 0.9 dB higher SNR is
required when the bandwidth is limited to
5.8 kHz (see Killion & Christensen®). As
a check, we filtered alternate QuickSIN
test lists (female talker) with a 5.8 kHz
low-pass filter and tested 14 hearing aid
wearers as open-ear subjects at 70 dB HL
presentation level. The average SNR
required by 13 of the subjects was 1.0 dB
higher in the filtered condition (the stan-
dard error of the mean difference for two
lists/condition was 0.4 dB). The 14th sub-
ject—who may have substantial inner hair
cell loss at low frequencies—required 7.5
dB greater SNR when the frequencies
above 5.8 kHz were eliminated. The com-
bined effect on speech understanding of a
2 dB AI-DI and a 5.8 kHz bandwidth is
that such a hearing aid has an effective
advantage in SNR over the amplified open
ear of only 1 dB (ie, 2 dB minus 1 dB
because of the limited bandwidth).

Third, additional distortion introduced
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SPACE* with female talker and pizza restaurant noise of 70 dB(A).

tle benefit.
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FIGURE 12. Situation in which directional microphones provide lit-

of these hearing aids was
not helping under high
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noise-level conditions when the speech
peaks were only 10-15 dB above the noise.
Indeed, the author has had just that experi-
ence recently with two different models of
recently purchased digital hearing aids.
Switching to directional mode almost made
up for the deficiencies in the hearing aids.
Unless the directional microphones were
activated, I could hear much better with my
OWn ears in a noisy restaurant.

Directional Microphones in
Reverberation

Figure 12 illustrates a case in which
the directional microphone provides no
benefit. The distinguishing feature is the
same one reported most recently by
Walden et al.® and Rickets'?: the distance
to the talker exceeds the critical distance.

In Figure 12, the “noise” is the previ-
ous speech sounds of the talker, which
hang on as if they are maskers. The signal-
to-noise ratio is thus determined by the
ratio of direct (speech) versus reverberant
sound (echo). When listeners sit in the
rear pew of a church, they are located well
beyond the critical distance, so the reduc-
tion in reverberation provided by a direc-
tional microphone may leave the reverber-
ation still dominant.

To prevent disappointment with direc-
tional microphones, the dispenser can do
two things:

1) Select directional hearing aids with real-
world AI-DI of 5 dB or better, and

2) Counsel the patient that the directional
microphones can be expected to provide
significant benefit when the talker is rela-
tively close and in front of them, and the
noise arrives mostly from the sides and
the back. However, relatively little benefit

may be realized when the talker is at a

distance or behind the hearing aid user

and/or the majority of the noise arrives
from in front.12»

With those two caveats in place, the
author’s experience is that directional
microphones and array microphones can
make a reliable, significant—and some-
times dramatic—difference in the ease of
understanding in noise. Kochkin® reported
a 90% satisfaction rate for a BTE direction-
al aid with a directional-vs-omni difference
of 5 dB. And the hearing industry contin-
ues to make progress: On a sample size of
757 directional hearing aids, Kochkin®
reported overall customer satisfaction of
81%, which equalled the US customer sat-
isfaction rating for all consumer electronic
products, and exceeded the satisfaction
rating for the best computers!

All signs point to the conclusion that
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there should be a good directional micro-
phone in every hearing aid. D
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