Watch Your Ears
Safeguarding Your Most Valuable Assets

by Mark Parsons

Mark Parsons has been a valuable contributor to MD for many years and on a wide variety of subjects. But on no occasion was his input more important than when he tackled the critical subject of hearing loss and protection. The article presented here originally appeared in the November and December 1997 issues.

Part 1: The Problem

I’m about to reveal my stupidity to the world at large, in the hope that it’ll help someone else avoid hearing problems I’ve experienced. My situation is all too common among musicians, especially drummers. The interesting part is that I can pinpoint the actual incident that drove my ears over the edge into hearing damage and tinnitus. In retrospect, I made several classic mistakes, which we’ll examine shortly.

Cram & Jam

The proverbial “straw that broke the camel’s back” occurred when my friend Tim and his wife Marie had their annual “Cram & Jam” party on the day after Thanksgiving. Marie cooks up a huge Italian feast for all their friends, after which the musicians among them waddle to Tim’s music room to sweat off some of those extra calories with an extended jam session.

Tim’s music room is replete with drums, guitars, basses, amps, PA, etc.—everything you need to make a little noise. The only drawbacks are that it’s not very big (maybe the size of a large bedroom) and it has bare walls and an eight-foot ceiling. Add to this the fact that the drums were set up in the corner, and you begin to get the idea that this was potentially a high-volume playing environment. When I gave the metal snare a few trial whacks it seemed incredibly loud, so I threw on a Zero-ring. By the middle of the second song I sensed that my unmiked drums weren’t “keeping up” volume-wise, so I pulled the Zero-ring off. By the third song I’d switched to 2B sticks, and I was playing as hard as I could.

In the back of my mind I knew I should either put in some ear plugs or stop playing. But I didn’t do either one, for several reasons. First, although I almost always carry ear plugs in my pocket, I’d left them out in my van, and it would have taken all of five minutes to go retrieve them. Besides, even though it was damn loud in there, my ears didn’t hurt. I’d been in situations before that exceeded the threshold of pain, but this wasn’t one of them. The music felt good and I was having too much fun to stop. On top of everything else I was the only drummer in the house at that moment. I knew that a couple of other drummers were slated to show up later, and I promised myself that as soon as one of them arrived I’d relinquish the throne.

We waited away for an hour before taking a break, by which time I had a headache and my ears had that numb, buzzy feeling that comes from too much volume for too long. By then another drummer had shown up, so I called it quits for the evening. (In retrospect, it was fortunate that I did!)

As I lay in bed that night I could hear my ears—particularly my right one—ringing. Many of you have probably experienced this after playing a high-volume gig or attending a loud rock concert: a high-pitched ringing that persists for a few hours or occasionally into the next day. This was like that except for one thing: It’s been months now and the ringing hasn’t gone away. According to my audiologist, it probably never will. To make matters worse, there’s been a slight but noticeable loss of the highest frequencies in my right ear.

Classic Mistakes

There are several common misconceptions about noise-induced (sensorineural) hearing damage, some of which I fell victim to. Let’s look at four of them:

1. “It doesn’t hurt, so it’s not damaging my hearing.” Not true, although the converse statement, “It hurts my ears, so there’s a potential for damage,” certainly is true.

For one thing, our hearing adjusts to the situation at hand. Faced with sustained high noise levels, our hearing will subjectively attenuate in an attempt to lessen discomfort. Although this may seem like we are “getting used to” the situation, in reality our ears are still taking a beating. It’s just that our brain is passing on less of this information in an effort to spare us some pain. As an example, when I first hit the snare in Tim’s music room, I winced at the volume. Yet within a few minutes I was happily bashing away because my hearing had accommodated the noise. Because of this, it’s a good idea to go with your first impression if a situation seems dangerously loud.

Another reason that pain isn’t a reliable indicator of dangerous noise levels is
because levels that seem quite moderate can damage your hearing, given enough exposure time. Take a look at the time-weighted exposure table below. Even 90 dB (lawn mower, truck traffic, etc.) can be harmful to your hearing if you’re exposed to it all day.

Human hearing is more sensitive than many people realize, and for good reason. When our hearing was evolving, its main function was to warn us of impending danger, and acuity was to be prized above all else. Except for the occasional lightning storm, most sounds in nature are relatively quiet, and it’s important to realize that our ears were never really designed to deal with thousand-watt subwoofers, Marshall amps, and brass piccolo snare drums.

2. “It’s only for a little while.” This is the other half of the equation. Take another peek at that table. Sound levels of 115 dB, such as a loud rock concert, can damage your hearing in as little as fifteen minutes. (And how many of us have ever been to a concert that only lasted fifteen minutes?) As we’ll see, in some circumstances a drumset can generate these sorts of levels.

Also, there are some types of sounds (extreme feedback, spikes from PA malfunctions, headphone accidents, etc.) that can harm your hearing almost instantly, so don’t think that just because an exposure is brief it’s necessarily safe.

3. “I’ve been playing this way for years with no major problems, so it’s probably safe.” Don’t bet on it! In fact, the longer you’ve been exposed to even moderate noise levels, the more likely it is that you’ll eventually have problems, because of one insidious fact: Noise-related hearing damage is cumulative.

My auditory misadventure probably wouldn’t have had much of an impact on my hearing if it hadn’t been preceded by twenty-five years of playing in rock groups, along with additional exposure from power tools, firearms, etc. Most noise-related hearing loss occurs gradually, over years, and may go unnoticed until the victim finally (for example) realizes that he’s having trouble understanding his wife across a table at a crowded restaurant. In fact, one of the classic signs of sensorineural hearing loss is the reduced ability to comprehend high-pitched voices in environments with high background noise.

So if you’ve been exposing your ears to high volume for quite a while with no noticeable effects, you should consider

<table>
<thead>
<tr>
<th>Sound Level</th>
<th>Representative Examples</th>
<th>Allowed Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 dB</td>
<td>quiet bedroom</td>
<td>no limit</td>
</tr>
<tr>
<td>65 dB</td>
<td>normal conversation</td>
<td>no limit</td>
</tr>
<tr>
<td>85 dB</td>
<td>manual machinery</td>
<td>no limit, but continual exposure may cause damage</td>
</tr>
<tr>
<td>90 dB</td>
<td>lawnmower</td>
<td>8 hours per day</td>
</tr>
<tr>
<td>95 dB</td>
<td>truck traffic</td>
<td>4 hours per day</td>
</tr>
<tr>
<td>100 dB</td>
<td>drill press</td>
<td>2 hours per day</td>
</tr>
<tr>
<td>105 dB</td>
<td>chain saw</td>
<td>1 hour per day</td>
</tr>
<tr>
<td>110 dB</td>
<td>snowmobile</td>
<td>30 min. per day</td>
</tr>
<tr>
<td>115 dB</td>
<td>kick drum (at drummer’s ears)</td>
<td>15 min. per day</td>
</tr>
<tr>
<td>120 dB</td>
<td>power saw</td>
<td>(max. w/o protection)</td>
</tr>
<tr>
<td>125 dB</td>
<td>10” tom (played hard)</td>
<td>never w/o protection</td>
</tr>
<tr>
<td>140 dB</td>
<td>rock concert</td>
<td>never w/o protection</td>
</tr>
<tr>
<td></td>
<td>21” rock ride (played hard)</td>
<td>15 min. per day</td>
</tr>
<tr>
<td></td>
<td>snare rimshot (played hard)</td>
<td>max. with protection</td>
</tr>
<tr>
<td></td>
<td>18” China cymbal (played hard)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>open hi-hats (played hard)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>threshold of pain for most people</td>
<td></td>
</tr>
<tr>
<td></td>
<td>firearms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jet engine</td>
<td></td>
</tr>
</tbody>
</table>

Information sources: US Department of Labor, Occupational Safety and Health Administration; California Occupational Safety and Health Administration; American Academy of Otolaryngology; Physician’s Hearing Service; author’s field measurements
yourself lucky. But don’t push your luck—you may be on the last of your ears’ nine lives. Instead, start taking precautions now. We’ll cover this in detail later, but in brief: Limit noise levels, limit exposure time, and, most importantly, wear hearing protection.

4. “We’re not using huge amps and speakers, so how bad can it be?” Plenty bad, given the right circumstances. In my studio, a fairly live room of moderate size, I have no problem getting my drums to generate levels in excess of 120 dB all by themselves. And even little amps can generate dangerous levels in close proximity. In fact, one of the highest onstage levels I’ve ever experienced was from a small guitar amp. We were on the road and had loaded into a new club whose stage was deeper than it was wide, so our guitar player ended up placing his amp on a chair almost directly behind me. During sound check the level from that amp was so high that I experienced pain and vertigo—the room seemed to tilt sideways and I felt like I was going to throw up. The guitarist balked at relocating his amp until I told him he’d sound pretty lame without a drummer.

You big band drummers don’t get off easy, either. Without an amp or speaker in sight, a horn section can create enough volume to set your ears ringing. And I shudder just to think about a marching band rehearsing indoors! The point is, noise is where you find it, and high levels of noise from any source—amplified or acoustic—can damage your hearing.

The Danger Factors
There are six interrelated factors that combine to create a hazardous situation. They are:

1. Intensity. Obviously, the louder the noise, the more danger you’re in. But most folks don’t know just how loud a given sound is. One way to tell is to memorize some common values from a noise exposure table. But a better method is to get a dB meter and measure your environment. (Radio Shack sells a decent meter for $40.)

Once you start measuring, you might be surprised at what you find. I measured a drumset, with all readings taken near the drummer’s head, to determine the approximate maximum volume of each piece, starting with the kick at 105 dB. Next were the toms in the 110-112 dB range, followed by most cymbals at 115 to 118 dB. The snare, as you might expect, put out some serious volume with rimshots peaking at around 120 dB. A pair of 15” heavy hi-hats could just about keep up with the snare when played hard, halfway open. But the loudest thing I measured was a pair of 14” Paiste 2002 Sound Edge hi-hats. When played in a serious “wash,” these puppies generated levels up to 125 decibels. (Note: all measurements are in the “A-weighted” mode, which is what OSHA uses for occupational exposure limits. It approximates the frequency response curve of the human ear.)

To put all this into perspective, keep in mind that the absolute maximum level OSHA will allow unprotected ears to be exposed to is 115 dB, and this exposure must be for less than fifteen minutes per day in order to avoid hearing loss. Kind of sobering, isn’t it?

2. Frequency. All sounds are not created equal. At any given volume, sounds of a higher frequency are more damaging to your ears than sounds containing low frequencies—which is why hi-hats, China cymbals, and high-pitched snares are particularly dangerous. Fortunately, most types of hearing protection reduce the higher frequencies
most of all.

3. Environment. The acoustic space in which your drums are played makes a big difference in the overall amount of sound bombarding your ears, due to the fact that the total sonic output of a drum (or any other sound source) is the sum of the direct sound and the reflected sound.

Small, reflective spaces can raise moderately loud sounds to dangerously high levels. For example, from a distance of 10' in a non-reflective environment, such as outdoors, snare rimshots generated only 100 dB. In a highly reflective environment—round room/bare walls/hard floor—the same drum generated 114 dB at 10'.

All of this explains why levels that might not bother you on stage at a roomy club can be sonic torture in a bedroom.

4. Time. The longer you’re exposed to a high noise level, the more damage your ears can suffer. That seems straightforward enough, but there are a couple of things to take into consideration:

The first is that “safe” exposure times are cut in half for every 5 dB increase in noise levels. This means that if the limit for 105 dB is one hour, it goes down to thirty minutes at 110 dB (and I don’t know anyone who can reliably tell the difference between 105 and 110 without a meter).

The second thing to remember is that these exposure limits are daily totals, taking into account your cumulative exposure over a twenty-four hour period. Once you’ve listened to music at 105 dB for an hour in the morning, you can’t go out later that afternoon and do something else at 100 dB for two hours—you’re done for the day. Period. Technically, anything over 85 dB is potentially damaging and becomes part of your daily exposure limit.

5. Proximity. The closer the noise, the more damaging it is. Recent studies have indicated an increase in hearing loss in young people, and much of it is attributed to the use of personal stereos with headphones. While a pair of phones may look pretty innocuous compared to a massive subwoofer, they can generate some very high levels because they’re so close to your ears.

As an example, I recorded levels of 110–120 dB on a pair of AKG K-240 studio standard headphones when measured inside the earcup, where your ear normally resides. As further testimony to the danger of headphones, Peter Erskine has attributed some of his hearing problems to a single massive overexposure he received when an engineer mistakenly sent an incredibly loud signal to his headphones during a recording session. Pete Townshend, when once asked during an interview about the causes of his infamous tinnitus and deafness, replied simply, “Headphones, headphones, headphones!”

Drummers typically run their phones hot in the studio in an effort to hear them over their drums, but as we’ll see in the second half of this article, there are isolation phones available that greatly attenuate external sounds, allowing you to set your headphones at a sane level.

6. Your personal exposure history. As stated, exposure—and subsequent hearing damage—accumulates over your lifetime. If you’ve already experienced years of high-volume music, the standard OSHA guidelines may not necessarily be safe for you. As for me, I’ve now got a whole new set of guidelines: When things get loud at all—say, over 90 dB—I wear hearing protection of one form or another.

And that brings us to our next topic:
Part 2: The Solution

At this point we're going to move on to the practical implications of hearing damage. And we'll discuss some real-world ways to avoid it.

Damage Factors

Before we consider the mandatory use of hearing protection, let's go back and look at the six factors that contribute to hearing damage, which I listed above. Depending on the style of music you play, attention to these factors may even make hearing protection unnecessary. Most of them can be reduced to one degree or another, as follows:

Intensity. I'm not going to tell you to play your drums quieter onstage—assuming you play at the level you do for musical reasons. But consider this: Some percentage of your time behind the set is spent practicing alone, and here is one place you can really make some improvements. You can, of course, simply practice quieter. But beyond that, there are several devices available to reduce the sound level being generated by your drums. At the mild end are Zero-rings, all the way up to rubber or foam "drum silencers," which drastically muffle your drums and cymbals. Yes, these latter products change the feel of your kit. But at least they'll let you do non-precision work (like stamina workouts) without taking a toll on your ears. For snare practice lately I've been using Quiet Tone's Drum Mute, which lets you have the feel and articulation of a real snare at a greatly reduced volume. Today's new mesh drumheads also offer silent practice with surprisingly good feel. Their only drawback is that you have to swap them with your regular heads to use them on your kit.

During rehearsals you can experiment with seeing how much you can decrease the entire band's volume and still get an effective rehearsal. You can usually accomplish this by turning down the amps and then getting everything else to match. If you're playing gigs where your drums aren't miked, you'll have to play at whatever volume works for your music. But if your band is going through a sound reinforcement system, then the onstage volume is pretty much up to you and your band: You can play as quietly as you want (within reason) and still
get a big sound in the house via the PA. And watch your monitors; they can account for more actual volume to the musicians' ears than just about anything else on the stage.

Frequency. There's not a whole lot you can do about the frequency content of your music. Just remember that high frequencies are directional in nature, so if you can keep your head off-axis to things like PA horns and guitar amps, you can save some wear on your ears. *(And try not to run your monitors so bright that they tear your face off!)*

Environment. A dampened rehearsal space will be much less abusive on your hearing than a bright, reflective room. Carpets, wall coverings, curtaing, acoustical tiles, padded furniture, and high ceilings will all help the cause. As I mentioned earlier, the difference between a reflective and non-reflective environment can amount to many decibels.

Time. As with volume, I'm not going to suggest you limit your actual practice or performance time. But do try to reduce your exposure to non-essential noise. Let's say your band is doing some recording and it's time for your guitarist to track some high-volume overdubs. Rather than hanging in the room with him, this would be the perfect time to find a quiet area to take a break.

Apply this concept to the non-musical areas of your life, too. Given the option of spending time in a high-noise or low-noise area, choose the quieter one, whether at an airline terminal or waiting for your car at a repair shop.

Proximity. Beware of close sound sources. We've talked about headphones and floor monitors, but don't forget about near-field studio monitors and car stereos. It's easy to abuse these because "they aren't really that loud." Maybe not in terms of moving massive volumes of air, but they're second to none at delivering damaging levels to your eardrums. Either back off, turn them down, or both.

Warning Signals

Even if you apply all the above precautions, how can you tell if things are still too loud? Besides taking actual sound
level measurements, audiologists suggest four practical methods to help determine if a situation is hazardous. Two of these can be used during exposure to the noise, and two are for after the fact to determine if you’ve already been exposed to damaging levels. (Take it from me, before is better than after!)

1. As a general rule, if you have to shout to make yourself heard over the background noise, you’re in a potentially dangerous situation.

2. If the sound hurts your ears, it’s hazardous. Although not all dangerous noise levels are pain-inducing, not everyone’s pain threshold is the same. Also, an individual’s pain threshold can be reduced after suffering hearing damage. I’ve lost approximately 20 dB of “pain headroom” since my overexposure. Things that didn’t used to bother me now feel like a spike being driven into my eardrum.

3. If your ears ring afterwards, you’ve definitely been overexposed. The ringing usually goes away, but too many such incidents can lead to permanent tinnitus and hearing loss.

4. If you experience temporary hearing loss after exposure to loud noise, you’ve done some damage to your ears. This, too, usually goes away after a while (a few hours to a few days). However, like the ringing, it should be taken as a serious warning.

Hearing Protectors I Have Known

Okay, time for the serious medicine. I’m going to divide hearing protectors into two groups, based on their sonic qualities. Those in the first group are primarily designed for industrial or sporting use, and cut out as much noise as possible without regard for the frequency response of the sound that does get through. The second category consists of hearing protectors that, while reducing the sound a significant (and in one case, variable) degree, also make an attempt to maintain a linear frequency response, which keeps things sounding natural. These devices are designed for musicians and concert-goers.

Please note that I’m only going to discuss those products with which I have personal experience. There are many others available that should give similar results within a given type, especially in the first category. (Most passive muffs are alike, as are most foam plugs. It’s when you get into the “musician’s” hearing protectors that they start to take on a personality of their own.) Let’s start with the industrial/sports category.

Earmuffs. Sold as “shooter’s earmuffs,” these are available for $15 to $50 at most sporting goods and hardware stores. I’ve used half a dozen various models over the years and they’re pretty similar from a sonic point of view, with the main difference being comfort. (So try before you buy.) Variations include models that allow you to position the headband in back instead of on top, and slimline collapsible models, which fold up for easy transport and storage. Most earmuffs have a Noise Reduction Rating (NRR) of between 20 and 30 decibels, which is more than adequate for our use.

I’m currently using a pair of fairly
generic Norton Gun Mufflers, which I'm happy with. To me, the applications where muffs shine is solo practice—you can play as loud and as long as you like, and your drums still feel like drums. And to tell the truth, I actually like the way drums sound through a pair of earmuffs; the mids and highs are attenuated more than the lows, so drums end up with a smooth, warm "studio" sound that's easy to listen to.

I don't really like earmuffs for band rehearsals. They make me feel too isolated and I have a hard time hearing exactly what the other musicians are doing. This goes double during gigs. Some people also find earmuffs visually distracting onstage.

There is a specialized type of earmuff we should mention here—the "isolation headphone." These are basically shooter's muffs with headphone drivers installed inside the earcups, and they can be a real boon to drummers. You can play along with a CD, tape, or external-output metronome without having to turn your phones up to dangerous levels in an effort to hear them over your drums. The only model I have any real experience with is the G.K. DrumPhones. These provide excellent isolation and decent sound quality. I've also heard good things about Metrophones, from Big Bang Distribution.

I bought four pair of DrumPhones for my studio for around $150—about what you'd expect to pay for a single pair of high-end phones (isolation-type or otherwise). Musicians use them while cutting basic tracks, such as any time there are live drums going down, and it's worked so well that my band now rehearses through them. No more bleeding ears after practice—how nice!

Earplugs. The short story on plugs is that they have many of the same attributes as earmuffs, but you can carry them in your pocket and they're almost invisible in use. Sonically they're not quite as
warm, but the difference is not great.

Earplugs are available made of silicon, wax-impregnated cotton, or foam. For my money foam plugs are the best. They’re reusable and inexpensive, and they provide a positive, comfortable fit on just about anyone, provided they’re installed correctly. They come in two basic shapes: cylindrical and conical, as exemplified by the E.A.R. Classic (NRR 29) and the Pura-Fit 6800 (NRR 31). I have a slight preference for the conical ones—they block out more sound and are a bit more comfortable to me for long-term use. They’re available pretty much anywhere for a buck a pair, and last for quite a while provided you wash them occasionally.

As with muffs, I don’t like to gig with foam earplugs, unless it’s extremely loud onstage. But for some folks they’re the answer to preserving their hearing. Gregg Bissonette told me that he basically wears foam plugs whenever he plays, even in the studio. He just puts them in and turns up the phones.

Before I adopted my current hearing protection (more about that in a minute), I used to rehearse with foam plugs by putting them in halfway so I had maybe a 10 dB reduction. Not very scientific, but better than nothing. Probably the best thing about foam plugs is that they’re so small, light, and inexpensive that you can afford to carry a pair with you at all times. I don’t know how many times I’ve had my hearing saved by my trusty foam plugs while attending a 120 dB concert. Buy a pair and keep ’em in your pocket. Now, on to some of the more linear-sounding models.

Over-the-counter musician’s earplugs.

These come in two basic styles. The E.A.R. HI-FI is a good example of the first type. It’s a “one size fits all” silicon affair with circular flanges of decreasing diameter designed to seal in various sizes of ear canals. They have a fairly flat response—much more natural-sounding than muffs or foam plugs—and a noise reduction rating of 12. So they provide adequate protection in most cases, yet not so much that you can’t rehearse or gig in them. They sell for around $16 and come with detailed instructions regarding their use, care, and cleaning. For me the biggest drawback is that they are somewhat uncomfortable, but they may fit you just fine.

The other type of plug doesn’t go in the ear canal at all. Manufactured by International Aquatic Trades, Inc. under the moniker of Doc’s Pro Plugs, these clear silicon plugs fit into the user’s outer ear. Because of this the fit must be fairly precise, which is why Pro Plugs come in eight different sizes. To facilitate proper fitting, the company makes a template printed on clear plastic, which you hold up to your ear to determine the correct size. It’s not a perfect system (some ears—like mine—fall between sizes) but it’s probably the best you can expect without going to the expense of a custom fit. Being a “vented” system, Pro Plugs provide a moderate reduction and a natural response without the plugged-up feeling of foam plugs. And at $8 a pair they’re not going to break your budget.

Custom-fitted hearing protection.

If you’re a musician and you’re serious about protecting your hearing, this is the “A” answer. I’m familiar with the
Westone/Etymotic Research (ER) Ear Gear system, so I'll direct my comments accordingly. But comparable products may also be available from other manufacturers.

To order a pair of custom earplugs, the first thing you need to do is contact an audiologist who is a dealer for these sorts of products. The manufacturer can supply you with a list of audiologists in your area who carry their product. Keep in mind that it pays to call more than one for a quote. One audiologist wanted $120 to fit me with a pair of Westone ER-15 plugs, while another quoted a price of only $70.

At your initial appointment your audiologist will discuss your needs, then take an impression of your ears by injecting a plastic compound into your ear canals, where it sets up in a few minutes. These impressions are then sent to Westone (a major supplier of hearing aids), who makes your permanent earpieces from them. After a few weeks your earpieces will be ready. You'll then return to your audiologist for a final fitting, along with sanding and buffing of the plugs if necessary to ensure fit and comfort.

Two models of Ear Gear are available for musicians: the ER-15 and the ER-25. The number indicates the dB reduction available from each model, and is determined solely by which of two available filters is inserted into the earpiece. I ended up getting the ER-15s and an extra pair of the ER-25 filters so I'd have different amounts of attenuation available. This set me back an additional $35, but they've already earned their keep.

In actual use the Ear Gear plugs have been everything I could have asked for. The first thing I did was put them in and play my drums, which ended up sounding just like my drums—only a lot quieter!

The ER-15s offer the most natural-sounding hearing protection I've ever experienced. And while switching to the 25 dB filters yields a sound with a slightly reduced high end, they still sound far superior to anything else with that much attenuation. The 15 dB filters seem to provide about the right amount of noise reduction for most rehearsing and performing situations (although you metal-heads might want to stick with the stronger filters), and the plugs are comfortable for extended wear.

Conclusion

I've learned two things during my little auditory odyssey, which I hope you can take from me and not have to learn firsthand. First: Our ears are not bulletproof. If most of us continue on our current path, we're facing hearing damage some time in the future. And second: Noise-induced hearing loss is preventable. Lots of "drummer-friendly" hearing protection is available, and we should all take advantage of it and preserve our hearing so we can enjoy an extended musical career. This is especially important if you've already experienced significant exposure and/or hearing damage. Except for moderate-volume situations in acoustically "nice" rooms, I'll rarely—if ever—play again without some sort of hearing protection. Putting up with the minor inconvenience is a small price to pay for keeping my hearing intact.